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Abstract. A Darboux transformation is developed for generating dark multi-soliton sol- 
utions of the MKdV equation. The Darboux matrices are found expliciuy in recursive 
manner and a system of linear algebraic equations is derived far determining the dark 
N-soliton solution. By means of the Binet-Cauchy formula an explicit expression of the 
dark N-soliton solution is obtained. 

Although the inverse scattering transform is the most systematic method for giving 
soliton solutions of certain nonlinear evolution equations (Gardner et a1 1967, Zakharov 
and Shabat 1971, Ablowitz et al 1973), the Darboux transform has its special meaning 
(Levi et al 1981, Asano and Kat0 1981). It is more simple and it can generate 
multi-soliton solutions by a pure algebraic process, when the Darboux matrices are 
found explicitly in a recursive manner (Chen et aI 1988, Chen and Huang 1989, Huang 
1992). 

The inverse scattering transform is also used for finding dark soliton solutions of 
certain nonlinear evolution equations (Zakharov and Shabat 1973, Kawata and Inoue 
1977, 1978). However, it is more involved in these cases. To extend the Darboux 
transformation to generate the dark soliton solutions is desirable (Asano and Kat0 
1981, 1984). Recently, the Darboux transformation has been examined for generating 
the dark soliton solutions of the MKdv equation (Chau et al 1991). Unfortunately, the 
calculation procedure in this case is too complicated and cannot be used in practice. 

The same problem is re-examined in the present paper. For this purpose we 
developed a Darboux transformation which has the same form as those for bright 
soliton solutions of the NLS equation (Chen et al 1988). The Darboux matrices are 
found explicitly in a recursive manner and then a system of linear algebraic equations 
for giving the dark N-soliton solution is derived. By using the Binet-Cauchy formula, 
an explicit expression of the dark N-soliton solution is obtained by a similar procedure 
as that used in the case of the bright soliton (Chen et al 1989). 

The MKdv equation 

U, + U, - ~u 'u ,  = 0 (1) 

&F(h)  = L(h)F(h )  (2) 

a,F(A) = M ( h ) F ( h )  (3) 

is known not to have bright soliton solutions. The Lax equations are 
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1366 Z-Y Chen et nl 

where 

L(h) = -ihu3+ U (4) 
M(A) = -i4A3u3 +4A2U- i2A( U*+ U,)v3 - U, + 2 U' (5 )  

or U=-( o u  ), 
U 0  

Now we consider dark soliton solutions of (1) that have finite values at spatial infinities 

U'C as x+ &a3 (7) 
where c is assumed to be positive. 

The asymptotic behaviours of Jost solutions of the Lax equations in the limit as 
IAl -f 00 are independent of particular solutions of U. Therefore, as in the paper of Chen 
et al (1988), the Jost solution F,,(A) can be defined recursively 

F n ( A )  = Dn(A)Fn-i(A) (8) 
where 

P" 
A. -P" D.(A)  = r +- 
A - A n  

/L. = -A. =real (10) 
and P, is a 2 x 2 matrix independent of A. A minor change here is that A, is real, since 
(2) can be transformed into an Hermitian eigenvalue equation. 

As in the paper of Chen et al (1988), we have 

U"= ~ n - l - i ( ~ . - ~ L . ) [ P n , ~ ~ l  (11) 

In the case of bright solitons, (PJ12 and (Pn)?! vanish at spatial infinities and then 
U. also vanishes. In the case of dark solitons (7), (Pn)12 and (P.)21 are shown not to 
vanish in these limits. One way is to assume 

Therefore, from (1 l), we have 

(-l)"u, = (-1)"-'~,_,+i4A,(P.),~ 

(-1)"u. = ( - l ) " - ' ~ ~ - ~  -i4An(Pn)2,. 

It is easily seen that P. must satisfy three conditions 

(PA= -(PA1 
( Pn)ll =pure imaginary 
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and 

on account of (16). 
With the condition (7), a simple solution of (1) is clearly 

U0 = c. 

The corresponding Jost solution Fo(A) is 

It can be shown that the three conditions (17)-(19) are satisfied by choosing 

P, = -i exp[ ( c2 - A:)-"2xn] 

6. = i exp[ ( cz - A~)"'xn] 
(24) 

(25) 

a, =exp[(c2-A.) 2 1/2 x.] 

yn=exp[(c2-A.) x.1 2 -1/2 

where x. is a real constant. We have also 

From them we have 

where 

e. = J Z Z  [x-X. + (42. + z c ~ ) ~ I  

p. = (-Jc"--- iA.)/c. (29) 

(28) 

We thus see that 

on - p. = i2h. f e. 

In the limit as x + m, we have 

(30) 
When n = 1, from (27) we can see that the conditions (17) and (18) are satisfied. 

It is clear that the condition (19) is satisfied when n = 1. We can show that the three 
conditions (17)-(19) are satisfied in recursive manner. 
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From these formulae, the dark 1-soliton solution of the h w d v  equation is 
-1 

uI = - c  + i4A = c - 2 - cz-A: C ( lihcosh[28,]) C (32) 

where --c<A,<c 
Though the dark multi-soliton solutions of the M K ~ V  equation can be obtained in 

a recursive manner, the calculation processes are still involved. As in the paper of 
Chen et al(1988), we can derive a system of linear algebraic equations for determining 
directly the N-soliton solution. From (8), we have 

(33) 

where the superscript T means the transpose, and 

L - A ,  1 
m + n A . - I l m  A"-& 

a,= n 
From (21), we have 

u ~ F ; ' ( A ) ~ u ~  = Fo(A). 

Equation (38) can be rewritten as 

Owing to (17) and (I@, the projection matrix P. must satisfy - 
u2 PZU2 = P.. 

and 

F ~ ( - A , ) = ~ = U ~ F ~ ~ ( A , ) ~ U ~ ,  

Therefore, we have 
F,(-A,) = u ~ F ~ ' ( A , ) ~ u ~ .  

(39) 

(42) 

(44) 

(45) 
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Setting A = p, = -A, in (41), we obtain 

u ~ F & ' ( A , ) ~ u ~  F i ' ( A , ) = Z -  ~ a , ' u z ~ ~ ( ~ . ) ~ u z ~ ~ l ( ~ " ) .  (46) 

With the same procedure as that in the paper by Chen er a1 (1988), we can show that 

N 

0-1  A, i A. 

where + ( A )  is the 2 x 1 Jost solution in the case of U = uN. We write 

where 

(49) a h. = e  -+ip,, e-'" 

hzp" ee"-ie-@". (50) 

Substituting these formulae into (46), the 21 and 22 elements of it are 

Introducing symbols 

- 
K ,  = a,'E,' (55) 

'Fz = - Y 2 A  (56) 
Y ~ = K - ~ ~ B .  (57) 

(-l)N~N = C - ~ Z ( R ~ ) ~ ~  (58) 

equation (46) can be rewritten in the matrix form 

The dark N-soliton solution of the MKdv equation can be expressed as 

where 

H. = h.. 

From (56), (57) and (59), we obtain 

det( Z + Q') 
det(I t Q) -' ( R N ) z l  = K ( I - A B ) - ' H T =  
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where 
Q =z -AB 
Q ' = Q + H ~ K .  

By using the known formulae, we have 

x B ( m ,  m2,.  . . , m,;  nl ,  4 , .  . . , n,) (65) 
where A(n,, n 2 , .  . . , n, ;  m,, m 2 , .  . . , m,) is a minor of order r of A which is a deter- 
minantofasubmatrixofA byremaining(n,, n,,. . . , n,)throwsand(m,, m,, . . . , m,)th 
columns. Q ( n , ,  n 2 , .  . . , nr) means a principal minor. From the particular forms of A 
and B, we find 

N n 1 ,  n 2 , .  . . , n,; m, ,  m 2 , .  .. , m,)B(m,, m. .  . ., m,; n l ,  n2, .. ., n,) 
= n  h,(o.k")-'n Em(a,L,)-l n (A"-A",)2 

m "C"' 

where 

n , n ' E I n l , n z ,  ..., n,} 
m, m ' c { m , , m , , . .  ., m,}. 

Q' can be rewritten as 
Q = -A'B' 

where A' is an N x (N + 1) matrix such that 
ALo = iH. Ai,,, = A., n , m = l , 2  ,..., N 

and B' is an (N+ 1) x N matrix 
BLn = iK. = Bm. n ,m=1 ,2  ,..., N. 

We then have 

Q'(nl, n2, .  .., n,) 
= (-1)' 1 A'(nl, n2, ..., n , ;  m l ,  mz ,... , m , )  

OZmtCm24 ... C m , C N  

x B'(m,, m 2 , .  . . , m,; n , ,  n 2 , .  . . , n,). (71) 
1. The summation is clearly decomposed of two: one is extended m, = 0, the other m, 

The latter is just Q(nl,  n,, . . . , n?). Therefore, we have 
det( l+ 0') -det(l+ Q) 

xA'(nl ,n,  ,..., n , ; 0 , m 2  ,..., m,) 
xE'(O,m,,  .. . , m , ;  n , ,  n 2 , .  . ., n,). 
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Similar to (66),  we have 

A'( n ,  , nZr . . . , n, ; 0, m z ,  . . . , mr) B'(0, m2, . . . , m, ; n,  , n,, . . . , n?)  

where 

n, n'E{nl ,  n2,. .. , n J  
m, m'c { m Z , .  . . , m,}. 

(74a)  

(74b)  

Though (73)  is similar to (66)  in form, (73)  is essentially different from (66) on account 
of the difference between (74) and (67) .  

Therefore, we obtain 

(RN)ZI = E N I D N  (75) 

where 
h 

D N =  (-1)' c c 
,=0 I<nl<n2< ... < n . l N  I Q m l c m 2 C  ... Cm+N 

with the condition (67)  and 

E@ {nl ,  n 2 , .  . . , n,.) e @ { m l , m 2 ,  . . . , m  ,I 
as well as 

N 

E N =  (--l)'+I c c 
, = I  1Lnl<n2< ... <+<N I =ml<  ... <m,r ;N 

with the condition (74)  and 

n'e! I n ] ,  nz ,  . . ., n,} { m 2 , .  . . , m,}. 
From (58) and (75),  we obtain an explicit expression of the dark N-soliton solution 
of the M K ~ V  equation. Up to now it has never been found by all means. 
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When N = 1, from (58) and (75) we obtain (32) also. When N = 2 ,  we have 

D2= k,lc&h;- a;'h,a;'~l(2A,)-2kzIi2~ - a;'h,a;'&,(A,+ A2)-2k2hl 

- a ; ' h z a ; ~ ~ l ( A , + A , ) ~ 2 k , ~ z - a ; ' h z a ; ' . & ( 2 A z ) ~ z k , ~ l  

+ a;2a;2h, h2&.&(Al - A2)4(2A,)~Z(AI + A2)-4(2A2)-2 (82) 
E 2-a, - - 1  h,kzh;h;+a;'h2k,h;~2 

+ a;Zh ,~ ,a ;~h2h; (h l -A2)2 (2Al ) - z (A2+  A,)-' 

+ a;lhla;2h2~2T,h;(A, - A2)'(A, + A ~ ) - ~ ( ~ A ~ ) - ~ .  (83) 
Substituting (39), (49) and (SO), we obtain 

where 

cosh'[ 0, - e,] 1 1 mJ2? 
CZ 

- 

cosh2[ 8, + e,] 

+ i8c-'{cosh2[ 8, + e,] + cosh2[e, - e,]) 
-i (87) 

A i + A z  (1 + ~ ) { ~ o o h ~ [ 8 , ] + c o s h ~ [ 8 ~ 1 ) .  
We thus obtain an explicit expression of U,. 

satisfy the corresponding Lax equations. From (41) and (47), we have 

lim {J,F~(A)}F-,'(A) 

Finally, we ought to show that the Jost solutions obtained by the above procedure 

A+*. 

= lim - (88) 

Similarly, {J,F,(h)}F;'(A) vanishes as A+F.. Therefore, A., pn, n = 1,2,. . . , N are 
regular points of {JXFN(A))F&'(A) and, similarly, of {J,F,(A)}Fi'(A). 

A-A. I '  A-& 
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From (33) and (35), we have 

{J.z~(A)}F;~(A) = G N & ) ~ W )  + G ~ ( A ) L , ( A ) G ; ( A )  (89) 

Lo(A) = -iAu3+C (90) 

where 

From the right-hand side of (89) we can see that {JxFN(A)}FG(A) has no cut on the 
real axis of complex A-plane. {J,FN(A)}FL'(A) is thus analytic everywhere except at 
A = o O .  

We expand GN(A) into a Taylor series about A =W. 

m 

GN(A)= 1 a$-' 
j = 0  

where 

ffo=I 
- R  -I' 

I -  N - ~ U N - C ) .  

Similarly, we have 

(93) 

(94) 

P o = I  p l = - f f l .  (96) 
Substituting (92) and (95) into (89), we have 

{JxFN(A)}F%A) = LN(A) +O(lAl-') (97) 
as ]A1+00. Therefore, {J,FN(A)}F;(A)-LN(A) is analytic in the whole complex 
A-plane and tends to zero as IAl+ 00, by Liouville theorem it is equal to zero. This yields 

GN,(A)G;(A)+ G N ( A ) & ( ~ ) G ~ ! ( A )  = (98) 

J,FN ( A )  = LN (A)FN (A) .  (99) 

or 

Similarly, we have 

{J,F~(A)}F;'(A) = GN&)GZ(h)+ G ~ ( A ) M ~ ( A ) G ; ( A )  (100) 

Mo(A) = -i4A3u3+4AZC -i2ACzu3+2C3. (101) 

where 

{8,FN(A)}F;(A) is thus analytic everywhere except A =W. Owing to (101), the right- 
hand side of (100) is 

4A2(-iAu3+ U,) -4Aal, -i2AC2u3-4(a2, + 
- i2((u, Czu3 + C2u3,Pl) + 2C3 + O(1Al-l) 

on account of (98). From (99) we have also 
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Multiplying it by u3G;'(A) and expanding the resultant equation about A = 00 we obtain 

2(-i)a,x =( U%- c2+ uNS)u3 
a , ,~r~+2( - i ) (a ,#~+  a?,) +2al,Cu3= ((I%- Cz+ U N x ) ( e l ~ 3 + ~ 3 p J .  

(104) 

(105) 
Substituting these terms into (102), (102) is equal to 

M d A )  + O W ' ) .  (106) 

A similar derivation as for (99) yields 

~ P N ( A ) =  MN(A)FN(A). (107) 
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