An explicit expression of the dark N -soliton solution of the MKdV equation by means of the Darboux transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys. A: Math. Gen. 261365
(http://iopscience.iop.org/0305-4470/26/6/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:59

Please note that terms and conditions apply.

An explicit expression of the dark \boldsymbol{N}-soliton solution of the mKdV equation by means of the Darboux transformation

Zong-Yun Chen†, Nian-Ning Huang \ddagger, Zhong-Zhu Liu \dagger and Yi Xiao \dagger
\dagger Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
\ddagger Department of Physics, Wuhan University, Wuhan 430072, People's Republic of China

Received 11 March 1992

Abstract

A Darboux transformation is developed for generating dark multi-soliton solutions of the MKdV equation. The Darboux matrices are found explicitly in recursive manner and a system of linear algebraic equations is derived for determining the dark N-soliton solution. By means of the Binet-Cauchy formula an explicit expression of the dark N-soliton solution is obtained.

Although the inverse scattering transform is the most systematic method for giving soliton solutions of certain nonlinear evolution equations (Gardner et al 1967, Zakharov and Shabat 1971, Ablowitz et al 1973), the Darboux transform has its special meaning (Levi et al 1981, Asano and Kato 1981). It is more simple and it can generate multi-soliton solutions by a pure algebraic process, when the Darboux matrices are found explicitly in a recursive manner (Chen et al 1988, Chen and Huang 1989, Huang 1992).

The inverse scattering transform is also used for finding dark soliton solutions of certain nonlinear evolution equations (Zakharov and Shabat 1973, Kawata and Inoue 1977, 1978). However, it is more involved in these cases. To extend the Darboux transformation to generate the dark soliton solutions is desirable (Asano and Kato 1981, 1984). Recently, the Darboux transformation has been examined for generating the dark soliton solutions of the MKdV equation (Chau et al 1991). Unfortunately, the calculation procedure in this case is too complicated and cannot be used in practice.

The same problem is re-examined in the present paper. For this purpose we developed a Darboux transformation which has the same form as those for bright soliton solutions of the NLs equation (Chen et al 1988). The Darboux matrices are found explicitly in a recursive manner and then a system of linear algebraic equations for giving the dark N-soliton solution is derived. By using the Binet-Cauchy formula, an explicit expression of the dark N-soliton solution is obtained by a similar procedure as that used in the case of the bright soliton (Chen et al 1989).

The mKdv equation

$$
\begin{equation*}
u_{t}+u_{x x x}-6 u^{2} u_{x}=0 \tag{1}
\end{equation*}
$$

is known not to have bright soliton solutions. The Lax equations are

$$
\begin{align*}
& \partial_{x} F(\lambda)=L(\lambda) F(\lambda) \tag{2}\\
& \partial_{t} F(\lambda)=M(\lambda) F(\lambda) \tag{3}
\end{align*}
$$

where

$$
\begin{align*}
& L(\lambda)=-\mathrm{i} \lambda \sigma_{3}+U \tag{4}\\
& M(\lambda)=-\mathrm{i} 4 \lambda^{3} \sigma_{3}+4 \lambda^{2} U-\mathrm{i} 2 \lambda\left(U^{2}+U_{x}\right) \sigma_{3}-U_{x x}+2 U^{3} \tag{5}\\
& U=\left(\begin{array}{ll}
0 & u \\
u & 0
\end{array}\right) \quad \text { or } \quad U=-\left(\begin{array}{ll}
0 & u \\
u & 0
\end{array}\right) . \tag{6}
\end{align*}
$$

Now we consider dark soliton solutions of (1) that have finite values at spatial infinities

$$
\begin{equation*}
u \rightarrow c \quad \text { as } x \rightarrow \pm \infty \tag{7}
\end{equation*}
$$

where c is assumed to be positive.
The asymptotic behaviours of Jost solutions of the Lax equations in the limit as $|\lambda| \rightarrow \infty$ are independent of particular solutions of u. Therefore, as in the paper of Chen et al (1988), the Jost solution $F_{n}(\lambda)$ can be defined recursively

$$
\begin{equation*}
F_{n}(\lambda)=D_{n}(\lambda) F_{n-1}(\lambda) \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& D_{n}(\lambda)=I+\frac{\lambda_{n}-\mu_{n}}{\lambda-\lambda_{n}} P_{n} \tag{9}\\
& \mu_{n}=-\lambda_{n}=\text { real } \tag{10}
\end{align*}
$$

and P_{n} is a 2×2 matrix independent of λ. A minor change here is that λ_{n} is real, since (2) can be transformed into an Hermitian eigenvalue equation.

As in the paper of Chen et al (1988), we have

$$
\begin{align*}
U_{n} & =U_{n-1}-\mathrm{i}\left(\lambda_{n}-\mu_{n}\right)\left[P_{n}, \sigma_{3}\right] \tag{11}\\
P_{n} & =\frac{F_{n-1}\left(\mu_{n}\right)\binom{\alpha_{n}}{\beta_{n}}\left(\gamma_{n} \delta_{n}\right) F_{n-1}^{-1}\left(\lambda_{n}\right)}{\left(\gamma_{n} \delta_{n}\right) F_{n-1}^{-1}\left(\lambda_{n}\right) F_{n-1}\left(\mu_{n}\right)\binom{\alpha_{n}}{\beta_{n}}} \tag{12}
\end{align*}
$$

where α_{n}, \ldots are constants. P_{n} is clearly a projection

$$
\begin{equation*}
P_{n}^{2}=P_{n} . \tag{13}
\end{equation*}
$$

In the case of bright solitons, $\left(P_{n}\right)_{12}$ and $\left(P_{n}\right)_{21}$ vanish at spatial infinities and then u_{n} also vanishes. In the case of dark solitons (7), $\left(P_{n}\right)_{12}$ and $\left(P_{n}\right)_{21}$ are shown not to vanish in these limits. One way is to assume

$$
U_{n}=(-1)^{n}\left(\begin{array}{cc}
0 & u_{n} \tag{14}\\
u_{n} & 0
\end{array}\right)
$$

Therefore, from (11), we have

$$
\begin{align*}
& (-1)^{n} u_{n}=(-1)^{n-1} u_{n-1}+\mathrm{i} 4 \lambda_{n}\left(P_{n}\right)_{12} \tag{15}\\
& (-1)^{n} u_{n}=(-1)^{n-1} u_{n-1}-\mathrm{i} 4 \lambda_{n}\left(P_{n}\right)_{21} \tag{16}
\end{align*}
$$

It is easily seen that P_{n} must satisfy three conditions

$$
\begin{align*}
& \left(P_{n}\right)_{12}=-\left(P_{n}\right)_{21} \tag{17}\\
& \left(P_{n}\right)_{21}=\text { pure imaginary } \tag{18}
\end{align*}
$$

and

$$
\begin{equation*}
\left(P_{n}\right)_{21} \rightarrow(-1)^{n} \frac{\mathrm{i} c}{2 \lambda_{n}} \quad \text { as } x \rightarrow \pm \infty \tag{19}
\end{equation*}
$$

on account of (16).
With the condition (7), a simple solution of (1) is clearly

$$
\begin{equation*}
u_{0}=c . \tag{20}
\end{equation*}
$$

The corresponding Jost solution $F_{0}(\lambda)$ is

$$
F_{\mathrm{p}}(\lambda)=\frac{1}{\sqrt{1+\rho^{2}}}\left(\begin{array}{cc}
\mathrm{e}^{-\theta} & -\rho \mathrm{e}^{\theta} \tag{21}\\
\rho \mathrm{e}^{-\theta} & \mathrm{e}^{\theta}
\end{array}\right)
$$

where

$$
\begin{align*}
& \theta=\sqrt{c^{2}-\lambda^{2}}\left[x+\left(4 \lambda^{2}+2 c^{2}\right) t\right] \tag{22}\\
& \rho=\left(-\sqrt{c^{2}-\lambda^{2}}+\mathrm{i} \lambda\right) / c \tag{23}
\end{align*}
$$

It can be shown that the three conditions (17)-(19) are satisfied by choosing

$$
\begin{array}{lc}
\alpha_{n}=\exp \left[\left(c^{2}-\lambda_{n}^{2}\right)^{1 / 2} x_{n}\right] . & \beta_{n}=-\mathrm{i} \exp \left[\left(c^{2}-\lambda_{n}^{2}\right)^{-1 / 2} x_{n}\right] \\
\gamma_{n}=\exp \left[\left(c^{2}-\lambda_{n}^{2}\right)^{-1 / 2} x_{n}\right] & \delta_{n}=i \exp \left[\left(c^{2}-\lambda_{n}^{2}\right)^{1 / 2} x_{n}\right] \tag{25}
\end{array}
$$

where x_{n} is a real constant. We have also

$$
F_{0}^{-1}(-\lambda)=\frac{1}{\sqrt{1+\rho^{-2}}}\left(\begin{array}{cc}
\mathrm{e}^{\theta} & \rho^{-1} \mathrm{e}^{\theta} \tag{26}\\
-\rho^{-1} \mathrm{e}^{-\theta} & \mathrm{e}^{-\theta}
\end{array}\right)
$$

From them we have

$$
\begin{align*}
F_{0}\left(-\lambda_{n}\right)\binom{\alpha_{n}}{\beta_{n}}\left(\gamma_{n} \delta_{n}\right) F_{0}^{-1}\left(\lambda_{n}\right) \\
=\left(\begin{array}{cc}
2-\mathrm{i} \bar{\rho}_{n} \mathrm{e}^{-2 \theta_{n}}+\mathrm{i} \rho_{n} \mathrm{e}^{2 \theta_{n}} & \bar{\rho}_{n}-\rho_{n}+\mathrm{i}\left(\mathrm{e}^{-2 \theta_{n}}+\mathrm{e}^{2 \theta_{n}}\right) \\
-\bar{\rho}_{n}+\rho_{n}-\mathrm{i}\left(\mathrm{e}^{-2 \theta_{n}}+\mathrm{e}^{2 \theta_{n}}\right) & 2+\mathrm{i} \rho_{n} \mathrm{e}^{-2 \theta_{n}-\mathrm{i} \bar{\rho}_{n}} \mathrm{e}^{2 \theta_{n}}
\end{array}\right) \tag{27}
\end{align*}
$$

where

$$
\begin{align*}
& \theta_{n}=\sqrt{c^{2}-\lambda_{n}^{2}}\left[x-x_{n}+\left(4 \lambda_{n}^{2}+2 c^{2}\right) t\right] \tag{28}\\
& \rho_{n}=\left(-\sqrt{c^{2}-\lambda_{n}^{2}}-\mathrm{i} \lambda_{n}\right) / c \tag{29}
\end{align*}
$$

We thus see that

$$
\begin{equation*}
\bar{\rho}_{n}-\rho_{n}=\mathrm{i} 2 \lambda_{n} / c \tag{30}
\end{equation*}
$$

When $n=1$, from (27) we can see that the conditions (17) and (18) are satisfied. In the limit as $x \rightarrow \infty$, we have

$$
\left(\begin{array}{cc}
\mathrm{i} \rho_{1} \mathrm{e}^{2 \theta_{\mathrm{t}}} & \mathrm{i} \mathrm{e}^{2 \theta_{1}} \tag{31}\\
-\mathrm{i} \mathrm{e}^{2 \theta_{1}} & -\mathrm{i} \bar{\rho}_{1} \mathrm{e}^{2 \theta_{1}}
\end{array}\right)
$$

It is clear that the condition (19) is satisfied when $n=1$. We can show that the three conditions (17)~(19) are satisfied in recursive manner.

From these formulae, the dark 1 -soliton solution of the mKdy equation is

$$
\begin{equation*}
u_{1}=-c+\mathrm{i} 4 \lambda_{1}\left(P_{1}\right)_{21}=c-2 \frac{c^{2}-\lambda_{1}^{2}}{c}\left(1+\frac{\lambda_{1}}{c} \cosh \left[2 \theta_{1}\right]\right)^{-1} \tag{32}
\end{equation*}
$$

where $-c<\lambda_{1}<c$.
Though the dark multi-soliton solutions of the mKdv equation can be obtained in a recursive manner, the calculation processes are still involved. As in the paper of Chen et al (1988), we can derive a system of linear algebraic equations for determining directly the N-soliton solution. From (8), we have

$$
\begin{equation*}
F_{N}(\lambda)=G_{N}(\lambda) F_{0}(\lambda) \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{N}(\lambda)=D_{N}(\lambda), \ldots, D_{1}(\lambda) \tag{34}
\end{equation*}
$$

We have also

$$
\begin{align*}
& F_{N}^{-1}(\lambda)=F_{0}^{-1}(\lambda) G_{N}^{-1}(\lambda) \tag{35}\\
& G_{N}^{-1}(\lambda)=D_{1}^{-1}(\lambda), \ldots, D_{N}^{-1}(\lambda) \tag{36}\\
& D_{n}^{-1}(\lambda)=I+\frac{\mu_{n}-\lambda_{n}}{\lambda-\mu_{n}} P_{n} . \tag{37}
\end{align*}
$$

Similar to that in the paper of Chen et al (1988), we have

$$
\begin{equation*}
G_{N}(\lambda)=I+\sum_{n=1}^{N} \frac{1}{\lambda-\lambda_{n}} a_{n}^{-1} \sigma_{2} G_{N}^{-1}\left(\lambda_{n}\right)^{\top} \sigma_{2} \tag{38}
\end{equation*}
$$

where the superscript T means the transpose, and

$$
\begin{equation*}
a_{n}=\prod_{m \nsim n} \frac{\lambda_{n}-\lambda_{m}}{\lambda_{n}-\mu_{m}} \frac{1}{\lambda_{n}-\mu_{n}} . \tag{39}
\end{equation*}
$$

From (21), we have

$$
\begin{equation*}
\sigma_{2} F_{0}^{-1}(\lambda)^{\mathrm{T}} \sigma_{2}=F_{0}(\lambda) \tag{40}
\end{equation*}
$$

Equation (38) can be rewritten as

$$
\begin{equation*}
F_{N}(\lambda) F_{0}^{-1}(\lambda)=I+\sum_{n=1}^{N} \frac{1}{\lambda-\lambda_{n}} a_{n}^{-1} \sigma_{2} F_{N}^{-1}\left(\lambda_{n}\right)^{\mathrm{T}} \sigma_{2} F_{0}^{-1}\left(\lambda_{n}\right) \tag{41}
\end{equation*}
$$

Owing to (17) and (18), the projection matrix P_{n} must satisfy

$$
\begin{equation*}
\overline{\sigma_{2} P_{n}^{\mathrm{T}} \sigma_{2}}=P_{n} . \tag{42}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\overline{\sigma_{2} D_{n}^{-1}\left(\lambda_{m}\right)^{\mathrm{T}} \sigma_{2}}=D_{n}\left(-\lambda_{m}\right) \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{0}\left(-\lambda_{m}\right)=\overline{F_{0}\left(\lambda_{m}\right)}=\overline{\sigma_{2} F_{0}^{-1}\left(\lambda_{m}\right)^{\mathrm{T}} \sigma_{2}} \tag{44}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
F_{N}\left(-\lambda_{m}\right)=\overline{\sigma_{2} F_{N}^{-1}\left(\lambda_{m}\right)^{\mathrm{T}} \sigma_{2}} \tag{45}
\end{equation*}
$$

Setting $\lambda=\mu_{m}=-\lambda_{m}$ in (41), we obtain
$\overline{\sigma_{2} F_{N}^{-1}\left(\lambda_{m}\right)^{\mathrm{T}} \sigma_{2}} \overline{F_{0}^{-1}\left(\lambda_{m}\right)}=I-\sum_{n-1}^{N} \frac{1}{\lambda_{m}+\lambda_{n}} a_{n}^{-1} \sigma_{2} F_{N}^{-1}\left(\lambda_{n}\right)^{\mathrm{T}} \sigma_{2} F_{0}^{-1}\left(\lambda_{n}\right)$.
With the same procedure as that in the paper by Chen et al (1988), we can show that

$$
\sigma_{2} F_{N}^{-1}\left(\lambda_{n}\right)^{\mathrm{T}} \sigma_{2}=\psi\left(\lambda_{n}\right)\left(\begin{array}{ll}
\frac{\gamma_{n}}{\delta_{n}} & 1 \tag{47}
\end{array}\right)
$$

where $\psi(\lambda)$ is the 2×1 Jost solution in the case of $u=u_{N}$. We write

$$
\begin{equation*}
\left(\gamma_{n} \delta_{n}\right) F_{0}^{-1}\left(\lambda_{n}\right)=\frac{1}{\sqrt{1+\rho_{n}^{2}}}\left(h_{n} k_{n}\right) \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
& h_{n}=\mathrm{e}^{\theta_{n}}+\mathrm{i} \rho_{n} \mathrm{e}^{-\theta_{n}} \tag{49}\\
& k_{n}=\rho_{n} \mathrm{e}^{\theta_{n}}-\mathrm{i} \mathrm{e}^{-\theta_{n}} . \tag{50}
\end{align*}
$$

Substituting these formulae into (46), the 21 and 22 elements of it are
$\overline{\left(\frac{\psi_{2}\left(\lambda_{m}\right)}{\delta_{m} \sqrt{1+\rho_{m}^{2}}}\right)\left(\bar{h}_{m} \quad \bar{k}_{m}\right)=\left(\begin{array}{ll}0 & 1\end{array}\right)-\sum_{n=1}^{N} \frac{1}{\lambda_{m}+\lambda_{n}}\left(\frac{\psi_{2}\left(\lambda_{n}\right)}{\delta_{n} \sqrt{1+\rho_{n}^{2}}}\right)\left(\begin{array}{ll}h_{n} & k_{n}\end{array}\right) . . ~ . ~ . ~}$
Introducing symbols

$$
\begin{align*}
& \Psi_{2 n}=a_{n}^{-1} \frac{\psi_{2}\left(\lambda_{n}\right)}{\delta_{n} \sqrt{1+\rho_{n}^{2}}} \tag{52}\\
& A_{n m}=h_{n} \frac{1}{\lambda_{n}+\lambda_{m}} a_{m}^{-1} \bar{h}_{m}^{-1} \tag{53}\\
& \bar{B}_{n m}=k_{n} \frac{1}{\lambda_{n}+\lambda_{m}} a_{m}^{-1} \bar{k}_{m}^{-1} \tag{54}\\
& \bar{K}_{m}=a_{m}^{-1} \bar{k}_{m}^{-1} \tag{55}
\end{align*}
$$

equation (46) can be rewritten in the matrix form

$$
\begin{align*}
& \bar{\Psi}_{2}=-\Psi_{2} A \tag{56}\\
& \Psi_{2}=K-\bar{\Psi}_{2} B . \tag{57}
\end{align*}
$$

The dark N-soliton solution of the mKdV equation can be expressed as

$$
\begin{equation*}
(-1)^{N} u_{N}=c-\mathrm{i} 2\left(R_{N}\right)_{21} \tag{58}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(R_{N}\right)_{21}=\sum_{n=1}^{N} a_{n}^{-1}\left(\frac{\psi_{2}\left(\lambda_{n}\right)}{\delta_{n} \sqrt{1+\rho_{n}^{2}}}\right) h_{n}=\Psi_{2} H^{\mathrm{T}} \tag{59}\\
& H_{n}=h_{n} . \tag{60}
\end{align*}
$$

From (56), (57) and (59), we obtain

$$
\begin{equation*}
\left(R_{N}\right)_{21}=K(I-A B)^{-1} H^{\Upsilon}=\frac{\operatorname{det}\left(I+Q^{\prime}\right)}{\operatorname{det}(I+Q)}-1 \tag{61}
\end{equation*}
$$

where

$$
\begin{align*}
& Q=-A B \tag{62}\\
& Q^{\prime}=Q+H^{\mathrm{T}} K \tag{63}
\end{align*}
$$

By using the known formulae, we have

$$
\begin{equation*}
\operatorname{det}(I+Q)=1+\sum_{r=1}^{N} \sum_{1 \leqslant n_{1}<n_{2}<\ldots<n_{r} \leqslant N} Q\left(n_{1}, n_{2}, \ldots, n_{r}\right) \tag{64}
\end{equation*}
$$

$Q\left(n_{1}, n_{2}, \ldots, n_{r}\right)$

$$
\begin{align*}
= & (-1)^{r} \sum_{1<m_{1}<m_{2}<\ldots<m_{r} \leqslant N} A\left(n_{1}, n_{2}, \ldots, n_{r} ; m_{1}, m_{2}, \ldots, m_{r}\right) \\
& \times B\left(m_{1}, m_{2}, \ldots, m_{r} ; n_{1}, n_{2}, \ldots, n_{r}\right) \tag{65}
\end{align*}
$$

where $A\left(n_{1}, n_{2}, \ldots, n_{r} ; m_{1}, m_{2}, \ldots, m_{r}\right)$ is a minor of order r of A which is a determinant of a submatrix of A by remaining ($n_{1}, n_{2}, \ldots, n_{r}$) th rows and ($m_{1}, m_{2}, \ldots, m_{r}$) th columns. $Q\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ means a principal minor. From the particular forms of A and B, we find

$$
\begin{align*}
A\left(n_{1}, n_{2}, \ldots,\right. & \left.n_{r} ; m_{1}, m_{2}, \ldots, m_{r}\right) B\left(m_{1}, m_{2}, \ldots, m_{r} ; n_{1}, n_{2}, \ldots, n_{r}\right) \\
= & \prod_{n} h_{n}\left(a_{n} k_{n}\right)^{-1} \prod_{m} \bar{k}_{m}\left(a_{m} \bar{h}_{m}\right)^{-1} \prod_{n<n^{\prime}}\left(\lambda_{n}-\lambda_{n^{\prime}}\right)^{2} \\
& \times \prod_{m<m^{\prime}}\left(\lambda_{m}-\lambda_{m^{\prime}}\right)^{2} \prod_{n, m}\left(\lambda_{n}+\lambda_{m}\right)^{-2} \tag{66}
\end{align*}
$$

where

$$
\begin{align*}
& n, n^{\prime} \in\left\{n_{1}, n_{2}, \ldots, n_{r}\right\} \tag{67a}\\
& m, m^{\prime} \in\left\{m_{1}, m_{2}, \ldots, m_{r}\right\} . \tag{67b}
\end{align*}
$$

Q^{\prime} can be rewritten as

$$
\begin{equation*}
Q^{\prime}=-A^{\prime} B^{\prime} \tag{68}
\end{equation*}
$$

where A^{\prime} is an $N \times(N+1)$ matrix such that

$$
\begin{equation*}
A_{n 0}^{\prime}=\mathrm{i} H_{n} \quad A_{n m}^{\prime}=A_{n m} \quad n, m=1,2, \ldots, N \tag{69}
\end{equation*}
$$

and B^{\prime} is an $(N+1) \times N$ matrix

$$
\begin{equation*}
B_{0 n}^{\prime}=\mathrm{i} K_{n} \quad B_{m n}^{\prime}=B_{m n} \quad n, m=1,2, \ldots, N \tag{70}
\end{equation*}
$$

We then have

$$
\begin{align*}
Q^{\prime}\left(n_{1}, n_{2}, \ldots,\right. & \left.n_{r}\right) \\
= & (-1)^{r} \sum_{0 \leqslant m_{1}<m_{2}<\ldots<m_{r}<N} A^{\prime}\left(n_{1}, n_{2}, \ldots, n_{r} ; m_{1}, m_{2}, \ldots, m_{r}\right) \\
& \times B^{\prime}\left(m_{1}, m_{2}, \ldots, m_{r} ; n_{1}, n_{2}, \ldots, n_{r}\right) . \tag{71}
\end{align*}
$$

The summation is clearly decomposed of two: one is extended $m_{1}=0$, the other $m_{1} \geqslant 1$. The latter is just $Q\left(n_{1}, n_{2}, \ldots, n_{r}\right)$. Therefore, we have

$$
\begin{align*}
\operatorname{det}\left(I+Q^{\prime}\right)- & \operatorname{det}(I+Q) \\
= & \sum_{r=1}^{N}(-1)^{r} \sum_{1 \leqslant n_{1}<n_{2}<\ldots<n_{r} \leqslant N} \sum_{1 \approx m_{2}<\ldots<m_{r} \leqslant N} \tag{72}\\
& \times A^{\prime}\left(n_{1}, n_{2}, \ldots, n_{r} ; 0, m_{2}, \ldots, m_{r}\right) \\
& \times B^{\prime}\left(0, m_{2}, \ldots, m_{r} ; n_{1}, n_{2}, \ldots, n_{r}\right)
\end{align*}
$$

Similar to (66), we have

$$
\begin{align*}
& A^{\prime}\left(n_{1}, n_{2}, \ldots, n_{r} ; 0, m_{2}, \ldots, m_{r}\right) B^{\prime}\left(0, m_{2}, \ldots, m_{r} ; n_{1}, n_{2}, \ldots, n_{r}\right) \\
&=(-1) \prod_{n} h_{n}\left(a_{n} k_{n}\right)^{-1} \prod_{m} \bar{k}_{m}\left(a_{m} \bar{h}_{m}\right)^{-1} \prod_{n<n^{\prime}}\left(\lambda_{n}-\lambda_{n^{\prime}}\right)^{2} \\
& \times \prod_{m<m^{\prime}}\left(\lambda_{m}-\lambda_{m^{\prime}}\right)^{2} \prod_{n, m}\left(\lambda_{n}+\lambda_{m}\right)^{-2} \tag{73}
\end{align*}
$$

where

$$
\begin{align*}
& n, n^{\prime} \in\left\{n_{1}, n_{2}, \ldots, n_{r}\right\} \tag{74a}\\
& m, m^{\prime} \in\left\{m_{2}, \ldots, m_{r}\right\} . \tag{74b}
\end{align*}
$$

Though (73) is similar to (66) in form, (73) is essentially different from (66) on account of the difference between (74) and (67).

Therefore, we obtain

$$
\begin{equation*}
\left(R_{N}\right)_{21}=E_{N} / D_{N} \tag{75}
\end{equation*}
$$

where

$$
\begin{align*}
& D_{N}=\sum_{r=0}^{N}(-1)^{r} \sum_{1 \leqslant n_{1}<n_{2}<\ldots<n_{r} \leqslant N} \sum_{1 \leqslant m_{1}<m_{2}<\ldots<m, \leqslant N} \\
& \times D_{N}\left(n_{1}, n_{2}, \ldots, n_{r} ; m_{1}, m_{2}, \ldots, m_{r}\right) \tag{76}\\
& D_{N}\left(n_{1}, n_{2}, \ldots,\right.\left.n_{r} ; m_{1}, m_{2}, \ldots, m_{r}\right) \\
&= \prod_{n} a_{n}^{-1} h_{n} \prod_{m} a_{m}^{-1} \bar{k}_{m} \prod_{n<n^{\prime}}\left(\lambda_{n}-\lambda_{n^{\prime}}\right)^{2} \prod_{m<m^{\prime}}\left(\lambda_{m}-\lambda_{m^{\prime}}\right)^{2} \\
& \times \prod_{n, m}\left(\lambda_{n}+\lambda_{m}\right)^{-2} \prod_{\tilde{n}} k_{\tilde{n}} \prod_{\tilde{m}} \bar{h}_{\tilde{m}} \tag{77}
\end{align*}
$$

with the condition (67) and

$$
\begin{equation*}
\tilde{n} \notin\left\{n_{1}, n_{2}, \ldots, n_{r}\right\} \quad \tilde{m} \notin\left\{m_{1}, m_{2}, \ldots, m_{r}\right\} \tag{78}
\end{equation*}
$$

as well as

$$
\begin{align*}
& E_{N}=\sum_{r=1}^{N}(-1)^{r+1} \sum_{1 \leqslant n_{1}<n_{2}<\ldots<n_{r} \leqslant N} \sum_{1 \leqslant m_{2}<\ldots<m_{r} \in N} \\
& \times E_{N}\left(n_{1}, n_{2}, \ldots, n_{r} ; 0, m_{2}, \ldots, m_{r}\right) \tag{79}\\
& E_{N}\left(n_{1}, n_{2}, \ldots,\right.\left.n_{r} ; 0, m_{2}, \ldots, m_{r}\right) \\
&= \prod_{n} a_{n}^{-1} h_{n} \prod_{m} a_{m}^{-1} \bar{k}_{m} \prod_{n<n^{\prime}}\left(\lambda_{n}-\lambda_{n^{\prime}}\right)^{2} \prod_{m<m^{\prime}}\left(\lambda_{m}-\lambda_{m^{\prime}}\right)^{2} \\
& \times \prod_{n, m}\left(\lambda_{n}+\lambda_{m}\right)^{-2} \prod_{\tilde{n}} k_{\bar{n}} \prod_{\tilde{m}} \bar{h}_{\tilde{m}} \tag{80}
\end{align*}
$$

with the condition (74) and

$$
\begin{equation*}
\tilde{n} \notin\left\{n_{1}, n_{2}, \ldots, n_{r}\right\} \quad \tilde{m} \notin\left\{m_{2}, \ldots, m_{r}\right\} \tag{81}
\end{equation*}
$$

From (58) and (75), we obtain an explicit expression of the dark N-soliton solution of the mKdV equation. Up to now it has never been found by all means.

When $N=1$, from (58) and (75) we obtain (32) also. When $N=2$, we have

$$
\begin{align*}
D_{2}=k_{1} k_{2} \overline{h_{1}} \bar{h}_{2} & -a_{1}^{-1} h_{1} a_{1}^{-1} \bar{k}_{1}\left(2 \lambda_{1}\right)^{-2} k_{2} \bar{h}_{2}-a_{1}^{-1} h_{1} a_{2}^{-1} k_{2}\left(\lambda_{1}+\lambda_{2}\right)^{-2} k_{2} \bar{h}_{1} \\
& -a_{2}^{-1} h_{2} a_{1}^{-1} \overline{k_{1}}\left(\lambda_{2}+\lambda_{1}\right)^{-2} k_{1} \bar{h}_{2}-a_{2}^{-1} h_{2} a_{2}^{-1} \bar{k}_{2}\left(2 \lambda_{2}\right)^{-2} k_{1} \bar{h}_{1} \\
& +a_{1}^{-2} a_{2}^{-2} h_{1} h_{2} \bar{k}_{1} \bar{k}_{2}\left(\lambda_{1}-\lambda_{2}\right)^{4}\left(2 \lambda_{1}\right)^{-2}\left(\lambda_{1}+\lambda_{2}\right)^{-4}\left(2 \lambda_{2}\right)^{-2} \tag{82}
\end{align*}
$$

$E_{2}=a_{1}^{-1} h_{1} k_{2} \bar{h}_{1} \bar{h}_{2}+a_{2}^{-1} h_{2} k_{1} \overline{h_{1}} \overline{h_{2}}$

$$
\begin{align*}
& +a_{1}^{-2} h_{1} \overline{k_{1}} a_{2}^{-1} h_{2} \overline{h_{2}}\left(\lambda_{1}-\lambda_{2}\right)^{2}\left(2 \lambda_{1}\right)^{-2}\left(\lambda_{2}+\lambda_{1}\right)^{-2} \\
& +a_{1}^{-1} h_{1} a_{2}^{-2} h_{2} \overline{k_{2}} \overline{h_{1}}\left(\lambda_{1}-\lambda_{2}\right)^{2}\left(\lambda_{1}+\lambda_{2}\right)^{-2}\left(2 \lambda_{2}\right)^{-2} \tag{83}
\end{align*}
$$

Substituting (39), (49) and (50), we obtain

$$
\begin{align*}
& D_{2}=\left(\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}-\lambda_{2}}\right)^{2} 4 \lambda_{1} \lambda_{2} D_{2}^{\prime} \tag{84}\\
& E_{2}=\left(\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}-\lambda_{2}}\right)^{2} 4 \lambda_{1} \lambda_{2} E_{2}^{\prime} \tag{85}
\end{align*}
$$

where

$$
\begin{align*}
D_{2}^{\prime}=\frac{4}{\lambda_{1} \lambda_{2}}(1 & \left.+\frac{\lambda_{1}}{c} \cosh \left[2 \theta_{1}\right]\right)\left(1+\frac{\lambda_{2}}{c} \cosh \left[2 \theta_{2}\right]\right) \\
& -\frac{1}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}\left\{\left[1+\frac{\lambda_{1} \lambda_{2}}{c^{2}}+\frac{\sqrt{c^{2}-\lambda_{1}^{2}} \sqrt{c^{2}-\lambda_{2}^{2}}}{c^{2}}\right] \cosh ^{2}\left[\theta_{1}-\theta_{2}\right]\right. \\
& +\left[1+\frac{\lambda_{1} \lambda_{2}}{c^{2}}-\frac{\sqrt{c^{2}-\lambda_{1}^{2}} \sqrt{c^{2}-\lambda_{2}^{2}}}{c^{2}}\right] \cosh ^{2}\left[\theta_{1}+\theta_{2}\right] \\
& \left.-2 \frac{\lambda_{1} \lambda_{2}}{c^{2}} \cosh \left[\theta_{1}+\theta_{2}\right] \cosh \left[\theta_{1}-\theta_{2}\right]\right\} \tag{86}
\end{align*}
$$

$E_{2}^{\prime}=-\mathrm{i} \frac{4}{\lambda_{2}}\left(\frac{\lambda_{1}}{c}+\cosh \left[2 \theta_{1}\right]\right)\left(1+\frac{\lambda_{2}}{c} \cosh 2 \theta_{2}\right)$

$$
\begin{align*}
& -\mathrm{i} \frac{4}{\lambda_{1}}\left(\frac{\lambda_{2}}{c}+\cosh \left[2 \theta_{2}\right]\right)\left(1+\frac{\lambda_{1}}{c} \cosh \left[2 \theta_{1}\right]\right) \\
& +\mathrm{i} 8 c^{-1}\left\{\cosh ^{2}\left[\theta_{1}+\theta_{2}\right]+\cosh ^{2}\left[\theta_{1}-\theta_{2}\right]\right\} \\
& -\mathrm{i} \frac{1}{\lambda_{1}+\lambda_{2}}\left(1+\frac{\lambda_{1} \lambda_{2}}{c^{2}}\right)\left\{\cosh ^{2}\left[\theta_{1}\right]+\cosh ^{2}\left[\theta_{2}\right]\right\} . \tag{87}
\end{align*}
$$

We thus obtain an explicit expression of u_{2}.
Finally, we ought to show that the Jost solutions obtained by the above procedure satisfy the corresponding Lax equations. From (41) and (47), we have
$\lim _{\lambda \rightarrow \lambda_{n}}\left\{\partial_{x} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)$

$$
=\lim _{\lambda \rightarrow \lambda_{n}}\left\{\frac{1}{\lambda-\lambda_{n}} a_{n}^{-1} \psi_{x}\left(\lambda_{n}\right)\left(\frac{\gamma_{n}}{\delta_{n}} 1\right)\right\} \sigma_{2}\left\{\psi\left(\lambda_{n}\right)\left(\begin{array}{ll}
\frac{\gamma_{n}}{\delta_{n}} & 1 \tag{88}
\end{array}\right)\right\}^{\mathrm{T}} \sigma_{2}=0
$$

Similarly, $\left\{\partial_{x} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)$ vanishes as $\lambda \rightarrow \mu_{n}$. Therefore, $\lambda_{n}, \mu_{n}, n=1,2, \ldots, N$ are regular points of $\left\{\partial_{x} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)$ and, similarly, of $\left\{\partial_{t} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)$.

From (33) and (35), we have

$$
\begin{equation*}
\left\{\partial_{x} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)=G_{N x}(\lambda) G_{N}^{-1}(\lambda)+G_{N}(\lambda) L_{0}(\lambda) G_{N}^{-1}(\lambda) \tag{89}
\end{equation*}
$$

where

$$
\begin{align*}
& L_{0}(\lambda)=-\mathrm{i} \lambda \sigma_{3}+C \tag{90}\\
& C=\left(\begin{array}{ll}
0 & c \\
c & 0
\end{array}\right) . \tag{91}
\end{align*}
$$

From the right-hand side of (89) we can see that $\left\{\partial_{x} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)$ has no cut on the real axis of complex λ-plane. $\left\{\partial_{x} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)$ is thus analytic everywhere except at $\lambda=\infty$.

We expand $G_{N}(\lambda)$ into a Taylor series about $\lambda=\infty$:

$$
\begin{equation*}
G_{N}(\lambda)=\sum_{j=0}^{\infty} \alpha_{j} \lambda^{-j} \tag{92}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{0}=I \tag{93}\\
& \alpha_{1}=R_{N}=\frac{1}{2}\left(U_{N}-C\right) \tag{94}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& G_{N}^{-1}(\lambda)=\sum_{j=0}^{\infty} \beta_{j} \lambda^{-j} \tag{95}\\
& \beta_{0}=I \quad \beta_{1}=-\alpha_{1} . \tag{96}
\end{align*}
$$

Substituting (92) and (95) into (89), we have

$$
\begin{equation*}
\left\{\partial_{x} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)=L_{N}(\lambda)+O\left(|\lambda|^{-1}\right) \tag{97}
\end{equation*}
$$

as $|\lambda| \rightarrow \infty$. Therefore, $\left\{\partial_{x} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)-L_{N}(\lambda)$ is analytic in the whole complex λ-plane and tends to zero as $|\lambda| \rightarrow \infty$, by Liouville theorem it is equal to zero. This yields

$$
\begin{equation*}
G_{N x}(\lambda) G_{N}^{-1}(\lambda)+G_{N}(\lambda) L_{0}(\lambda) G_{N}^{-1}(\lambda)=L_{N}(\lambda) \tag{98}
\end{equation*}
$$

or

$$
\begin{equation*}
\partial_{x} F_{N}(\lambda)=L_{N}(\lambda) F_{N}(\lambda) \tag{99}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left\{\partial_{t} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)=G_{N t}(\lambda) G_{N}^{-1}(\lambda)+G_{N}(\lambda) M_{0}(\lambda) G_{N}^{-1}(\lambda) \tag{100}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{0}(\lambda)=-\mathrm{i} 4 \lambda^{3} \sigma_{3}+4 \lambda^{2} C-\mathrm{i} 2 \lambda C^{2} \sigma_{3}+2 C^{3} \tag{101}
\end{equation*}
$$

$\left\{\partial_{t} F_{N}(\lambda)\right\} F_{N}^{-1}(\lambda)$ is thus analytic everywhere except $\lambda=\infty$. Owing to (101), the righthand side of (100) is

$$
\begin{array}{r}
4 \lambda^{2}\left(-\mathrm{i} \lambda \sigma_{3}+U_{N}\right)-4 \lambda \alpha_{1 x}-\mathrm{i} 2 \lambda C^{2} \sigma_{3}-4\left(\alpha_{2 x}+\alpha_{1 x} \beta_{1}\right) \\
-\mathrm{i} 2\left(\alpha_{1} C^{2} \sigma_{3}+C^{2} \sigma_{3} \beta_{1}\right)+2 C^{3}+\mathrm{O}\left(|\lambda|^{-1}\right) \tag{102}
\end{array}
$$

on account of (98). From (99) we have also

$$
\begin{equation*}
G_{N x x}(\lambda)+2 G_{N x}(\lambda) L_{0}(\lambda)=\left(U_{N}^{2}-C^{2}+U_{N x}\right) G_{N}(\lambda) \tag{103}
\end{equation*}
$$

Multiplying it by $\sigma_{3} G_{N}^{-1}(\lambda)$ and expanding the resultant equation about $\lambda=\infty$ we obtain
$2(-\mathrm{i}) \alpha_{1 x}=\left(U_{N}^{2}-C^{2}+U_{N x}\right) \sigma_{3}$
$\alpha_{1 x x} \sigma_{3}+2(-\mathrm{i})\left(\alpha_{1 \times} \beta_{1}+\alpha_{2 x}\right)+2 \alpha_{1 x} C \sigma_{3}=\left(U_{N}^{2}-C^{2}+U_{N x}\right)\left(\alpha_{1} \sigma_{3}+\sigma_{3} \beta_{1}\right)$.
Substituting these terms into (102), (102) is equal to

$$
\begin{equation*}
M_{N}(\lambda)+\mathrm{O}\left(|\lambda|^{-1}\right) \tag{106}
\end{equation*}
$$

A similar derivation as for (99) yields

$$
\begin{equation*}
\partial_{t} F_{N}(\lambda)=M_{N}(\lambda) F_{N}(\lambda) . \tag{107}
\end{equation*}
$$

Acknowledgments

This work was supported by the Chinese National Fund for Nonlinear Science Research and by the Chinese National Fund for Natural Science Research.

References

Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 301262
Asano N and Kato Y 1981 J. Math. Phys. 222780
-_ 1984 J. Math. Phys. 25570
Chau L L, Shaw J G and Yen H C 1991 J. Math. Phys. 321737
Chen Z Y and Huang N N 1989 Phys. Lett. 142A 31
Chen Z Y, Huang N N and Xiao Y 1988 Phys. Rev. A 384355
_ 1989 Commun. Theor. Phys. 12327
Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Reu. Lett. 191095
Huang N N 1992 J. Phys. A: Math. Gen. 25469
Kawata T and Inoue H 1977 J. Phys. Soc. Japan 43361

- 1978 J. Phys. Soc. Japan 441722

Levi D, Pilloni L P and Santini P M 1981 Phys. Lett. 81A 491
Zakharov V E and Shabat A B 1971 Zh. Eksp. Teor. Fiz. 61118 (Engl. transl. 1972 Sov. Phys.-JETP 34 62)
—— 1973 Zh. Eksp. Teor. Fiz. 641627 (Engl. transl. 1973 Sov. Phys.-JETP 37 823)

